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On the capacity of neural networks with binary weights 

I Kocher and R Monasson 
Laboratoire de Physique ThCorique de I'Ecole Nomale  SupCrieuret, 24 rue Lhomond, 
75231 Paris Cedex 05, France 

Received 26 April 1991 

Abstract. We study the critical capacity (ac) of multilayered networks with binary couplings. 
We show that, far any network presenting a tree-like architecture after the fin1 hidden 
layer, no fixed internal representation is required. Using Gardner's calculations, we apply 
statistical mechanics to the simplest network with two layers of adaptive weights. Following 
the same approach as for the binary perceptron we find from the zero-entropy point a 
critical capacity a. = 0.92. We discuss the validity of this result in view of exhaustive search 
simulations on small networks. 

1. Introduction 

Over the past few years, a lot of work has been devoted to the storage capacity of 
neural networks. The simplest feedforward network, namely the perceptron with real 
synaptic weights [l], has been studied using statistical mechanics tools developed by 
Gardner [2,3], which allow the computation of the number of independent random 
patterns which can be stored in this network. Nevertheless, such a network is unable 
to solve nonlinearly separable problems. Thus, one has to consider more complicated 
architectures, including hidden units, which are much more interesting from both 
biological and computational points of view. 

Unfortunately, nobody has succeded until now in finding capacities of neural 
networks which are really multilayered, i.e. with free couplings between the first hidden 
layer and the output. In order to get around this problem, a useful idea has been to 
choose a priori the internal representation: one freezes the weights below the first 
hidden layer, building a specific decoder which matches these hidden units and the 
output [4]. The computation is then reduced to the capacity of a single perceptron 
(input-first hidden layer), which produces the desired internal representation in the 
first hidden layer. The most studied internal representation is the parity representation, 
where the output is the product of the hidden units [4-71. In this paper we shall show 
that the computation of the capacity of some really multilayered networks with binary 
weights needs no arbitrary internal representation choice; this one is indeed already 
imposed by the network's architecture itself. 

We propose here to consider networks with one hidden layer and binary weights. 
Such weights are interesting from a practical standpoint because one can easily 
implement them in eiecironic circuiis. Tney also represeni iiie simplesi way io iake 
into account the notion of synaptic depth (the limited accuracy of the synaptic 
couplings), which is biologically motivated [8]. 
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We show in section 2 that, for this class of networks, the internal representations 
are automatically fixed, which allows the computation of statistical quantities. We will 
see that, more generally, in the case of networks presenting a tree-line architecture 
after the first hidden layer, the principle of the calculations is also valid. A wide range 
of neural networks is obviously dismissed by this constraint and many complicated 
tasks (as for instance the encoding problem) cannot he solved by tree-like structures. 
However, one hidden-layer networks are already able to implement usual Boolean 
functions (for example, the parity decoder) and their study remains of interest. 

We then restrict our study to the case where there are three hidden units and 
non-overlapping receptive fields. Gardner’s method allows us to compute the number 
of errors made by the best possible network as a function of the size of the training 
set (section 3). 

We find some estimates of the critical capacity, particularly that given by the 
zero-entropy point within the replica symmetric approximation 18, IO]. We show, as 
in the case of the binary perceptron, that this value seems to be exact (section 4). 
However, numerical simulations are not in very good agreement with it (section 5 )  
and lead to the conclusion that layered neural networks might exhibit richer overlap 
distributions than previously thought. 

2. Networks with binary weights and internal representations 

In this section we consider networks with one hidden layer and binary weights. Let A 
be such a network. The neurons are binary valued too, with zero thresholds. 

Thus, each neuron U is updated according to 

(2.1) 

where S, = *1 are the neurons in previous layer and W, = *1 are the weights. We shall 
restrict ourselves to cases where the number of neurons in each layer is odd, in order 
to avoid ambiguities in (2.1). 

The network we study is composed of one input layer of N neurons, one hidden 
layer of K neurons and one output layer. For simplicity, we restrict ourselves to the 
case where there is only one neuron in the output layer. K is finite, while the results 
we derive helow are obtained in the large-N limit. 

For 1 between 1 and K, we define the weights Wy, between the input neuron m 
(1 s m < N)  and the neuron 1 of the hidden layer ( 1  s I<  K )  and the weights W :  
between the neuron 1 of the hidden layer and the single output. For a given input 6, 
(1 < m < N), the corresponding output is therefore 

We consider here a network characterized by the couplings [ W}, and we want to 
compute the capacity in the case of random patterns: each pattern presented to the 
network is a pair (5; v) where .$ = ((,, . . . , C,.,) is a configuration of the input layer, 
and U is the desired output for this configuration. This pattern will be considered as 
stored if the output U(( W), 6) realized by the n’etwork coincides with the desired 
output U. 
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In order to compute the capacity of this network, we present to it a set of P random 
fi  5 P )  and we define an energy which corresponds to the number patterns (&"' U @ )  (1 

of unstored patterns among the set [3] 

where e(x) is the Heaviside function. We then introduce a Boltzmann measure in the 
space of networks, characterized by the partition function 

ZA= 1 exp(-PE({ W ,  (&I)) (2.4) 
{ W t  

where p is an auxiliary parameter which plays the same role as the inverse of a 
temperature. The minimum number of mistakes which can be realized by the best 
possible network is the internal energy (or the free energy f) at the limit p + 00. 

Therefore, one wants to compute the free energy 

1 -  -pfA= lim - h Z ,  
N-m N 

where the overbar denotes the average over the pattern distribution [3]. 

output, we can associate an effective coupling 
! h e  to !he choice of binzry %eights, to each path ( E ,  !) from !he ir?pu! to the 

(2.6) J(l ,  m, 1 wl) = W w&. 
We obtain from (2.2) 

A straightforward computation leads to ZA= 2KZ, with 

Z, is the partition function of the network B defined as follows: it has the same 
architecture as A; all the weights beyond the hidden layer are fixed to unity and form 
a decoder which imposes an internal representation to B; the { J ]  couplings between 
the input and the hidden layer are binary. 

As K remains finite when N -f m, A and B have exactly the same free energies and 
therefore the same properties. 

We have actually proved that any network with two layers of adaptative binary 
weights may be related to another one with a given internal representation, whose 
study is much easier. 

Let us notice that the above argument may be repeated with weights equal to 
- l , O ,  1. This allows us to choose incompletely connected networks for A. It is thus 
possible to generalize the above result to a more general class of networks, composed 
of all the multilayered networks without overlapping fields after the first hidden layer, 

and have a tree architecture between this first hidden layer and the output. The important 
fact is that, for each cell of the hidden layer, there is one and only one synaptic path 
to reach the output. They are composed of one input layer of N neurons, H - 1 hidden 
layers, and one single output. 

Q..-L -n....n-L- -"- La F . . l l . .  rnn-nrta.4 ha+,.m.n th. i n _ . , +  - - A  thn first hirlrln- I -..__ 
0 " C I I  I I S L W V L h D  CL.,, "L 1Y"J C Y l l l l r l L C "  I l L L * * C G . l  L1.b " L V Y L  Y1.U L... L...,. . . I Y U C I I  ,LLyrr, 
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Let kh (1 < h s H) be the number of hidden cells in the hth layer. The input layer 
(numbered zero) has k, = N neurons, while the output layer has k ,  = 1. Each kh ( h  3 1) 
is finite. 

For the layer hsH-1 ,  the architecture of the network defines a partition 
{Ct, .  . . , Cih+,} of the kh neurons of the layer: each neuron I ( I =  1, . .  . , k h + , )  of the 
layer h + l  is connected to the neurons of C:, and only to them (this is indeed 
compulsory for h 3 1). We define as W:, the weight between the neuron m of the 
layer h ( m  E Cr) and neuron I of the layer h + 1 (1  < I S  kh+ , ) .  The case H = 1 gives 
the binary perceptron. 

To each path { I }  = lo, I , ,  . . . , IH from the input to the output we can associate an 
effective coupling 

J ( { I ) ,  {WI) = wc:, w;::l*->. . . #,,lo. (2.9) 

We obtain from (2.9) 

We see obviously that the network has the same partition function as the one where 
all weights between the first hidden layer and the output are fixed to unity (with a 
proportionality factor 2" where K =Zr:: kh is finite). We can conclude that any 
binary network which has a tree architecture after the first hidden layer is equivalent 
to a two-layered binary network with a particular internal representation, which is 
fixed by the architecture of the initial network. 

In the following, we illustrate this property on the simplest tree-like network, which 
contains only one hidden layer. 

3. A special case: a two-layered network with non-overlapping fields 

3.1. Presentation of the network 

The network we study here in more detail is given in figure 1. It has one hidden layer 
of K units. Each of them is connected to N / K  input neurons [S-71. Following the 
idea developed in section 2 we can fix the weights between the hidden units and the 
output U to +l. Thus, we obtain 

where the J, and el are, respectively, the couplings and the input patterns of the K 
disconnected perceptrons. 

We define the capacity a per synapse by 

where P is the number of presented patterns ew = (67, e:, . . . , 6%). p = I , .  . . , P. All 
(TI and U' are unbiased random binary variables. 

One sees obviously that U is the most frequent sign among the hidden cells ul, 
( I  = 1,. . . , K ) .  Any two-layered network with binary weights obeys, therefore, 
a majority rule. 
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Figure 1. The network which we study has one hidden layer of K units. Each of them is 
connected to N I K  input neurons. Notice that K is odd so that the field incoming onto 
the output is not vanishing. 

9 1 ô .-."...̂ ,:̂ .. ^C.L^ .."".:.:".. T..-.̂ .i.... 
J.L. L,orr,puruuun "J l r l r  pu""1v" , u r r L , r v r r  

Using the replica method, we have to compute the nth powers of Z defined in (2.8) 
and average over the patterns. 

Since inputs of different hidden units are independent [4,5], the only kind of 
parameter is 

(3.3) 

where the brackets denote a thermal average over the J weights. qPb is the typical 
overlap between the couplings incoming into the hidden neuron I in replicas a and b 
( a  and b are replica indices which run from 1 to n ) .  

Introducing conjugate parameters 4pb we find 

where 

Finally, we determine the free energy f by 

(3.4) 

- 
Z"-1 - p j =  lim __ 

W O . N - =  nN 
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3.3. Replica symmeiric and replica symmelry broken calculations 

In the following we will note the two solutions as, respectively, RS and RSB. We give 
here the free energy of the network, up  to one step of replica symmetry breaking. 

We consider first the RS approximation where for all a # b, and for all I = 1 , .  . . , K ,  
9Pb = 9. We get rid of the I dependence since, after averaging over disorder, all units 
play the same role [4-71. 

We compute the above quantities go, g, and gp and find afterwards the saddlepoint 
of (3.4): 

I Kocher and R Monasson 

K 

- $ { ( l - q ) +  D z l n [ 2 c o s h ( z ~ ) ] + a  I 1 Dx’ I I =  I 

where 

is the Gaussian measure. 

[ l o ]  and 
With one step of replica symmetry breaking, one has five parameters qo, to, q,, {, , m 

(3.9) 

with 

4. Some estimates of the critical capacity 

In this section, we try to predict the theorical critical capacity from the previous 
calculations. In order to have numerical values we choose K = 3, which is the lowest 
possible integer allowing non-vanishing field on the output. 

4.1.  Bounds on a, 

Since the number of binary synapses is N, the information theory tells us that 

a c s  1. (4.1) 
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This upper bound can easily be obtained from the annealed approximation [lo], which 
consists of calculating In Z = In Z. - 

One can also look for lower bounds of a<. 
Let us consider the binary perceptron ( W], including N input neurons and fed 

with P =  a N  random patterns e@. As N grows to infinity we definef(a) as the highest 
fraction of the P patterns which can be stored. 

With the notation of section 2 

1 
P f(a)= 1--miqW)(E({W3 (0). (4.2) 

Obviously, if a s a o  (ao is the capacity of the binary perceptron [ 101 and is assumed 
to be nearly equal to 0.83), one obtains f(a) = 1. 

For a > ao, there exists {WO} storing exactly all the 6% ( p  S a , N ) .  Since the pattern 
distribution is random, half of the remaining 6% ( p  > a , N )  are stored by {WO}. This 
algorithm leads to 

(4.3) 

Moreover, choosing a and a' such that a ' s  aoS a, we define g(a, a') as the highest 
starzb!e frzctinn nfthe P = C N  pa!terns when imposing the criterion th-! the ='.V first 
patterns must be stored. We have 

a' 
f ( a )  2 g ( a ,  a ' ) 2 p ( a )  a-. (4.4) a 

Now, we are looking to store P = a N  patterns in our two-layered network. We number 
as A,,  A, and A, the three perceptrons of N / 3  inputs, whose outputs U , ,  uz and U, 
are the three hidden cells. One pattern is stored if at least two u,s are equal to +I .  

Renumbering the patterns, A, stores the J's, p s P, = aI N where P, = f ( 3 a ) P .  Thus, 

a, = af (301).  (4.5) 

f ( 7 n \ >  1 - 3 ,  (4.6) 

As a consequence, A, must store the patterns p > P, . This is possible if P - P, S a , N / 3 :  

LI 

3 a  ,\-.-,- 

When this condition is satisfied, all patterns p > P2 = a , N  may be stored by A, with 
P - P2 = g ( 3 a ,  3a - 3 a , ) P  and 

a z = a ( l - g ( 3 a , 3 a - 3 a , ) ) .  (4.7) 
We see in figure 2 that A, can store the patterns p S P 2  and p > P , ,  provided that 
P , + ( P -  P , ) S a , N / 3 .  Using (4.5) and (4 .7) ,  

(4.8) 
a0 

3a 
f ( 3 a ) + g [ 3 a , 3 a ( l  - f ( 3 a ) ] a 2 - - .  

First, we notice that, for asa,, p ( 3 a ) a  1 -u , /3a .  From (4.3) we conclude that 
condition (4.6) is verified up to a = ao. 

E..-.IL -"t-"--:-" t.. I" 1 1  ""A i n  " l  "^ ,^"" "" ... ̂ I.-.." 
1 " I I I I C i l l l l V I C ,  1C1C,, ,L1E. tu ,-.,, 'XIIU ,-.-?,, CID 1V"E. .a> w c  II'l.YC 

a0 p ( 3 u ) + p ( 3 a )  3 2 -- 
301 

condition (4.8) will be true. Solving (4 .9) ,  we find a s $ a 0 .  

(4.9) 
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Figure 2. The outputs n, of the three perceptrons A, for the patterns r*t’ ( p  = 1.. . aN). 
Since our network obeys a majority rule at least two outputs must be positive for each 
One easily sees conditions (4.6) and (4.8) on the diagram. Notice that, as o, is random 
between ui and a t ,  our algorithm cannot reach the highest capacity ac 

The lower bound of a, is therefore 

a,3&,=0.55 .  (4.10) 

4.2. Analysis of the RS Qpproximation 

Starting from the free energy given in (3.7), we see that the zero-temperature energy 
(i.e. the number of unstored patterns) is zero as long as q < l .  A possible critical 
capacity is thus a€, the lowest a for which q reaches 1. 

We find 

16 
aE = -2.56 

5 w - 6 - 2 f i  (4.11) 

This value being inconsistent with (4.1), the RS solution surely becomes wrong below 
aE. We have studied its local stability with regard to transverse fluctuations [2,3,11] 
(longitudinal stability is always verified up to ah). We have found that the RS solution 
is locally stable up to 

aAT= 1.3. (4.12) 

We can look for the zero-temperature entropy S,,, which is the logarithm of the 
number of couplings storing all the patterns. As soon as it becomes negative, the RS 

solution is wrong. This occurs for a >as where 

as 3 0.92. (4.13) 

The curves q ( a )  and &,(a) are shown in figures 3 ( a )  and 3(b) .  

4.3. The one-step RSB solution 

We proceed exactly as in the binary perceptron case and look for solution for (3.5) 
with one stage of replica symmetry breaking in the hierarchical scheme of Parisi [9]. 
As we seek for the critical capacity, we consider the case q1  + 1 where 

(4.14) 
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Figure 3. Evolution with a of ( a )  the order parameter 9 and ib)  lhe enirapy within the 
RS approximation. The entropy vanishes for as =0.92 and we obtain q(a,)-0.38.  

is the overlap inside one pure state y and look for the saddlepoint over 
K -  

40 = ; W 7 ( J ) 8  (4.15) 

which is the overlap between the average solutions of two different valleys y and S. 
The saddlepoint condition over & gives q*,+oo when 9,' 1 and, from (3.9), we 

obtain 
1 

fRSH(qOr60, 1,m,m38)=;f~s(clo, m'ijo,8m). (4.16) 

We deduce from this equality a phase diagram, shown in figure 4. It indicates that the 
(a, T )  plane is divided into two parts separated by the line T J a )  defined by 

&,(a, TAU)) =o. (4.17) 
In the first area SRs>O and the RS solution seems to be correct. In the second area 
one needs one step of breaking. We get SRs,( a, T) = 0 and 

(4.18) 

where P, is the weight of the pure state numbered 7. This analysis (see [6,7, I O ] )  leads 
us to believe that the critical capacity is us given in (4.13). 

5. Numerical simulations 

From a numerical point of view, dealing with binary networks is much harder than 
for continuous ones. Already in the perceptron case there is no reliable algorithm 
(guaranteed to converge if there exists a solution). We have therefore decided to use 
exact enumeration methods. But such exhaustive scannings forbid large-size systems 
and N = 2 S  is a typical upper limit for the number of input neurons [U, 131. In the 
present case, the number of neurons connected to each hidden unit must be odd. Only 
simulations with N = 9 ,  IS or 21 are allowed, if one wants to average the results over 
a reasonable number of samples. 
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0 
0 1 2 3 

alpha 

Figure 4. Phase diagram (a, T). The plane is divided into two parts separated by the line 
J,(a). Beyond J, the RS Solution seems to be exacf while, below, one needs one step of 
replica symmetry breaking. 

5.1. First simulation 

The first approach we resort to is the one given in [6]. Choosing randomly Q samples 
of P =  a N  patterns, one counts the fraction fN(a. Q) which can be stored (i.e. for 
which there exist suitable couplings). As a function of a, fN(a)  (obtained with large 
Q )  decreases from 1 (a = 0) to 0 (large a). In the large-N limit one expects 

lim fN(a)=  @(a, -a ) .  (5.1) 

A simple estimate of the critical capacity a, is thus given by aN defined byfN(aN) = f .  
The simulations we did with binary patterns exhibit big fluctuations for N = 21. 

However, we checked that the slopes offN were increasingly sharper and aN decreased 
with N. After averaging over Q samples equal respectively to 10000, 1000 and 100, 
we found 

N t W  

a, = 0.93 i 0.004 

aL5  = 0.90* 0.006 ( 5 . 2 )  

a2, =0.87*0.015. 

Although these values are not in good agreement with the prediction ac = 0.92, one 
must consider finite-size effects, which might be important. Even in the binary percep- 
tron case, data obtained from simulations with binary patterns up to N = 21 extrapolate 
to a value lower than 0.83 1131. 



The capacity of neural networks 371 

5.2. Second simulation 

In order to reduce finite-size effects, we now choose Gaussian patterns, for which 
better results have been obtained for the perceptron [ 12,131 (from the replica method 
one expects that Gaussian or binary patterns lead to the same values of the storage 
capacity a=). For one pattern f = (g,, J;, f 3 ) ,  and one network J = (JI, J 2 ,  J3) ,  we 
compute the stabilities of the three independent inputs 

l =  1,2 ,3 .  Ji . 61 
IlJ111 . 11611 K ,  = (5.3) 

Ordering the K ,  so as to obtain K ,  s K , s K , ,  we define 

K (4 5) = K2. (5.4) 

As our network follows a majority rule, we see that J stores the pattern f (i.e. J .  t>  0) 
if and only if K ( J ,  f )  > 0. For one sample S = { f " }  ( p  = 1 , .  . . , P )  consider the optimal 
stability KoPc(S) ,  which is positive if there exists one set of couplings suitable for the 
whole sample: 

K,,,(S) = maxi[min,(K(J, &")I. ( 5 . 5 )  

using an exact enumeration based on the Gray code [12], we plot the distribution of 
KoD,<S) for fixed a and iV: 

The curves corresponding to N = 9, 15 and 21 are given in figure 5.  The numbers 
of samples are, respectively, equal to lo5, lo4 and 1500. 

First, we notice that K,,,(S) may be relatively well fitted by a Gaussian, whose 
variance scales roughly as 1/N. This strongly indicates that, in the large-N limit, one 
obtains sharply peaked distributions and thus provides a good indication for the critical 
capacity [13]. 

We show i n  figure 6 the fitted curves &,,(a) (i.e. the average of K.,,(S) over S) 
for the three values of N under study. Their intersections with the axis give us new 
estimates aN of a,. We find \ 

ag = 0.902*0.001 

a,,=0.896*0.002 (5.6) 

a2, =0.898+0.003. 

As for the binary perceptron, these values are higher than the ones given by binary 
patterns. In fact, no rigorous proof of the equality of the critical capacities obtained 
with Gaussian and Ising inputs is available. 

One sees that the numerical results are slightly lower than the expected value. 
However, the relative error over a2, does not allow us to conclude whether critical 
capacities obtained for finite N are decreasing or not. In the first case, which would 
be similar to the perceptron one [12,13], this would indicate that the storage capacity 
is not 0.92. I n  the second case, one could expect important finite-size effects in 
multilayered networks, even with Gaussian patterns. 

6. Conclusion 

In this paper we have focused on the storage capacity of multilayered networks with 
binary weights. We have shown that all networks with tree-like structures after the first 
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Figure 5. The dtalribution of KoD,(S): ( 0 )  far N = 9 ;  ( b )  lor N =  IS:  (c )  for N = 2 l .  For 
each size N, the values of OL we h a w  chosen are as close as possible to 0.92. 



The capacity of neural networks 319 

0.8 O S  1.0 
alpha 

Figure 6. Evolution of KOp, with the size of the training set a, for N = 9 (chain line), I S  
(dotted line) and 21 (broken line). These curves are the best quadratic fits obtained from 
the numerical results. 

hidden layer may be exactly studied, without fixing an internal representation a priori. 
We have illustrated this property for the simplest two-layered network with non- 
overlapping receptive fields, which works as a majority decoder (calculations are indeed 
feasible for any tree-like network: one will obtain more complicated decoders). 

Applying statistical mechanics tools developed recently [2, lo] we found that this 
network exhibits the same behaviour as the binary perceptron. Its zero-temperature 
entropy computed within the RS approximation vanishes for as = 0.92 and a complete 
freezing occurs, described by one step of replica symmetry breaking. This result is 
interesting since it suggests that a small modification of the architecture (three added 
neurons) may lead to a substantial improvement of the storage capacity per synapse 
of the network (a,=0.83 for the perceptron). 

In order to check this estimate, numerical simulations have been carried out. Up 
to N, the number of input neurons, equal to 21 they give values which are lower than 
0.92. So as to elucidate this situation, one must take into account finite-size effects. 

patterns. When dealing with Gaussian patterns, however, all the results obtained for 
the perceptron may be extrapolated to the zero-entropy point with good accuracy 
[12,13]. We have shown this not to be the case for our majority network. But one 
cannot exclude that, for N > 21, the aN values increase up to 0.92 (non-monotonous 
variations with Gaussian patterns may occur in other problems like the generalization 
for the binary perceptron [13]). So, without asserting that 0.92 is a wrong value, we 
may doubt that the zero-entropy point provides us with the correct a<. If this were 
the case the solution with one step of replica symmetry breaking would be wrong. One 
should thus attempt to compute up to two steps of breaking, i.e. to look for a more 
complicated saddlepoint. 

l.-l_... R e r e n t  r t i ~ r l i e c  ".--.-I L _ _ J  1111 have -..- dwQ.erl ""_- thpir -.._.. imnnrtance ....I. eqeria!!y in !he case of !$fizry 
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